

 نصب گردد. شكل r-19 جنين شبكهالى را نشان میدهد.

ازهردو منبع به طرف نقطه اتصالى صورت ميگيرد. دراين صورت مدارشكن Qbl ، Q انتقال توان را ازانشعاب به سمت شين مى بيند
 مدارشكن را الششين به سمت انشعاب خواهد ديد و دراين صورت اين نقطه درجلوى اين مدارشكن واقع ميشود . درحاليكه همين نقطه براى

 سرواقع ميشود.
 هرانشعاب (دراين جا حفاظت اضافه جريان) تنها زمانى اجازه عملكرد داده شود كه اتصالى درنقاط جلوى هرمدارشكن انـ رخ دان داده

 حفاظت انشعاب خود، فرمان قطع دريافت ميكند كه اتصالى درجلوى انن واقع شـده باشـد.

شكل

بنابراين براى هماهنگ كردن رلهما در شبكه دو سر تغذيه، مدارشكنها , ا با وجود رله جهتياب مىتوان بها دو دسته تقنـيهم كرد. هر
 در هر دسته هماهنگ نمود. براى مثال در شكل مذكور مدارش شكنهاي

شكل IA－r ：هماهنگى رله هاى اضافه جريان جهت دارازنوع زمان معين درشبكه دوسوتنذيه

همحجنانكه ازشكل

 رله جهت ياب امكان عملكرد ندارد．

دراين بخش شيوه تشخيص موقعيت خطا نسبت به مدارشكن توسط رله جهت ياب بررسى ميشود．براي شُروع مطلب توضيحات

 7

شكل r－r－：درشبكه DC جهت جريان و جهت انتقال توان يكسان اسـن

فرض ميشود كه كليد S1 بسته باشد. دراين صورت به منزله آن است كه خطائى درنقطه F1 ر خ د داده انست . ملاحظه ميشود كه

 درجلوى مدارشكن

\qquad مدارشكن مينوان ازيك ابزارجريان سنج DC (قطبى) به عنوان رله جهت ياب الستفاده كرد .

ولى درشبكه AC . تعيين موقعيت اتصالى نسبت به هرمدارشكن را نميتوان ازروى جهت جريان درمدارتعيين كرد .علت آن است كه جريان در شبكه قدرت يك كميت AC است كه جهت آن به صورت تناوبى عوض ميشود. درجنين شبكه ای الى براى تشخيص

شكل r-ا؟: درشبكه AC براى تشخيص جهت اتصالى ازمثبت يا منفى بودن توان اكتيو ميتوان استفاده كرد.

هنگام اتصالى درهرنقطه ازشبكه انتقال توان ازهردو منبع به سمت نقطه اتصالى صورت ميگيرد. دراين شبكه به جاى آمبرمتر، از

 Hex ميدهد.

 به واتمترW W برابر - اس
 هردومنبع نقطه اتصالى را تنذيه ميكنند و انتقال توان اكتيواز هردو منبع به طـي
 برابر Z
\qquad
 मे

 $\begin{array}{ll}4+7 & \because 2 \\ i= & =2\end{array}$

Qb2 شكل Tr-r ب ب : اتصالى درنفطه F2

 الست. روشُن است كه مقدارتوان دراينجا مورد نظر نيست بلكه علامت مثبت لارد
 فأزور ديگّرى مانند ولتار مقايسه ميشود. كمينى كه فازج

${ }^{1}$ Polarizing Quantity
 كميت (

نشان داه شده است.

شكل r-rجهت ياب با زاويه ماكزيمم گششتاور θ درجه $V I \cos (\varphi \div \theta)$

 جهت ياب با زاويه ماكزيمم گشثـتاورصفردر جه
$V I \cos (\varphi)$

 يك مجموعه تحت عنوان ساخته مىشود.

ץ- - • ا- اتصالات رله جهت ياب:
parme:
Butid.

 كوتاه دو فاز را دريك خط سه فاز نشا نشان ميدهد.

شكل r-هاז: دياكرام فازورى ولتاروجريان ها قبل وبعداز إتصال كوتاه دو فاز.

 كه جريان و ولتار رله همفاز باشند ، يعنى

- نيز C C , B B I I و ولتارثهاى K
 نيست. در حال حاضر نيز كمتر مورد استفاده قرار مىگيرد.

شكل r-r ז\%: ناحيه عُملكرد وعدم عملكرد برای رله با اتصال • r درجه

 بيش فرض ضريب توان يك، • 9 درجه اختلاف فاز دارند بنابراين اتصال • 9 درجه ناميده مىشود.

 φ عبارت است از:

$$
-\frac{\pi}{2}-\alpha \leq \varphi \leq \frac{\pi}{2}-\alpha
$$

بديهى است براى ساير مقادير φ رله عملكرد ندارد. در حال حاضر در اكثر طرحهاى حفاظتى كه شامل رله رله جهتياب و اضافـه تزانسهاى ڤدرت مناسب است استفالـاده مىشود.
r-r-r-r -

شكل r-r جريان درشبكه سه فاز جريان مولفه صفررا بدست ميدهـ

[^0]در موارديكه نقطه صفر شبكه توسط مقاومت زمين شـده باشُد معمولاُ اين مقاومت نسبت به ساير اميدانسهاى موجود در در شبكه صفر

 Fowent محاسبات اتصال كوتاه زمنين انجام شود و حدود تغييرات زاويه فاز در شبكه صفر تعيين گردد.
r-F-l•- موارد كاربرد رله جهت ياب :

به جز شبكه دو سو تغذيه موارد ديگرى نيز ميتوان بيان كرد كه هماهنگى زمانى و جريانى رله ها به تنهانى براى هماهنگى أنها

昭 برای

شكل r-9 ا : لزوم استفاده ازرله جهت ياب درشبكه حلقوى
هر نقطه اتصالى در خطوط ارتباطن بين بستهاى اين شُبكه دو مسير بتغذيه وجود دارد . بنابراين رله جهتنياب

 دسته جداگًانه در نظر كرفته مىشود.
 باشد، در دو طرف فيدر ميانى دو رله زمان عملكرد يكسان خواهند داشت و لازم نيست داراى عضو جهتیاباب باشنـد. (جرا؟).
 مىتواند فاقد رله جهتياب باشد (جرا؟).
 r.

شكل r-r-r : لزوم استفاده ازرله جهت ياب درخطوط موازى

 شماره ا درنقطه انى مانند

[^0]: ${ }^{1}$ Open Delta
 ${ }^{2}$ Residual Voltage

